1 . 已知为锐角,,则__________ .
您最近半年使用:0次
2023-12-27更新
|
552次组卷
|
1卷引用:陕西省咸阳市永寿县中学2024届高三上学期调研模拟测试数学(文)试题
2 . 已知函数在上是增函数,且,则的值为______ .
您最近半年使用:0次
2023-12-27更新
|
455次组卷
|
1卷引用:四川省成都市郫都区2024届高三上学期阶段检测(二)文科数学试题
解题方法
3 . 已知函数.
(1)若不等式的解集为,求的值;
(2)解关于的不等式.
(1)若不等式的解集为,求的值;
(2)解关于的不等式.
您最近半年使用:0次
2023-12-25更新
|
190次组卷
|
1卷引用:山东省淄博市桓台第一中学2023-2024学年高一上学期10月月考数学试卷
名校
解题方法
4 . 已知函数是定义在上的奇函数.
(1)求实数,的值:
(2)试判断函数的单调性并用单调性的定义证明;
(3)若对任意的,不等式恒成立,求实数的取值范围.
(1)求实数,的值:
(2)试判断函数的单调性并用单调性的定义证明;
(3)若对任意的,不等式恒成立,求实数的取值范围.
您最近半年使用:0次
2023-12-24更新
|
847次组卷
|
2卷引用:黑龙江省大庆市实验中学实验一部2023-2024学年高一上学期期中数学试题
解题方法
5 . 已知全集为,集合,,.
(1)若,求,;
(2)若,求实数的取值范围.
(1)若,求,;
(2)若,求实数的取值范围.
您最近半年使用:0次
2023-12-20更新
|
436次组卷
|
2卷引用:天津市南开区2023-2024学年高一上学期阶段性质量监测(一)数学试题
名校
6 . 设区间a是函数定义域的一个子集,若存在,使得成立,则称是的一个“不动点”,也称在区间a上存在“不动点”,例如的“不动点”满足,即的“不动点”是.
(1)若函数有两个互为相反数的“不动点”,求实数a的值:
(2)若函数在区间上不存在 “不动点”,求实数a的取值范围.
(1)若函数有两个互为相反数的“不动点”,求实数a的值:
(2)若函数在区间上
您最近半年使用:0次
2023-12-20更新
|
390次组卷
|
2卷引用:黑龙江省哈尔滨市第九中学校2023-2024学年高一上学期12月月考数学试卷
名校
解题方法
7 . 已知是偶函数.
(1)求实数的值;
(2)用定义法证明函数在上的单调性;
(3)解不等式.
(1)求实数的值;
(2)用定义法证明函数在上的单调性;
(3)解不等式.
您最近半年使用:0次
2023-12-19更新
|
200次组卷
|
1卷引用:河南省安阳市第一中学2023-2024学年高一上学期第二次阶段考试数学试题
8 . 已知函数.
(1)求的对称轴方程;
(2)将函数的图象向左平移个单位,再将所得图象上所有点的纵坐标不变,横坐标变为原来的2倍后所得到的图象对应的函数是,求在上的零点个数.
(1)求的对称轴方程;
(2)将函数的图象向左平移个单位,再将所得图象上所有点的纵坐标不变,横坐标变为原来的2倍后所得到的图象对应的函数是,求在上的零点个数.
您最近半年使用:0次
2023-12-16更新
|
80次组卷
|
1卷引用:江苏省徐州市2024届高三上学期合格考试学情调研数学试题
解题方法
9 . 已知函数
(1)用函数的单调性的定义证明:在区间上为减函数;
(2)求函数在区间上的最大值.
(1)用函数的单调性的定义证明:在区间上为减函数;
(2)求函数在区间上的最大值.
您最近半年使用:0次
2023-12-15更新
|
228次组卷
|
1卷引用:新疆乌鲁木齐市第三十一中学2021-2022学年高一上学期期末考试数学试题
2023高一·江苏·专题练习
10 . 已知满足 ,且时,
(1)判断的单调性并证明;
(2)证明:;
(3)若,解不等式.
(1)判断的单调性并证明;
(2)证明:;
(3)若,解不等式.
您最近半年使用:0次
2023-12-15更新
|
519次组卷
|
1卷引用:5.4 函数的奇偶性(1)-【帮课堂】(苏教版2019必修第一册)
(已下线)5.4 函数的奇偶性(1)-【帮课堂】(苏教版2019必修第一册)