场景:
难度:
解题方法
1 . 已知函数.
(1)当时,求不等式的解集;
(2)当时,设函数的最小值为,若均为正数,且,求的最大值.
(1)当时,求不等式的解集;
(2)当时,设函数的最小值为,若均为正数,且,求的最大值.
您最近一年使用:0次
名校
解题方法
2 . 已知.
(1)化简求值:;
(2)若是第一象限角,,且,求的值.
(1)化简求值:;
(2)若是第一象限角,,且,求的值.
您最近一年使用:0次
2024-01-27更新
|
788次组卷
|
3卷引用:湖南省长沙市周南中学2023-2024学年高一上学期期末考试数学试题
(已下线)5.5.1两角和与差的正弦、余弦、正切公式(第1课时)
名校
解题方法
3 . 已知,.
(1)判断函数的单调性,并用定义证明你的结论.
(2)若对,不等式恒成立,求实数的取值范围.
(1)判断函数的单调性,并用定义证明你的结论.
(2)若对,不等式恒成立,求实数的取值范围.
您最近一年使用:0次
2024-01-25更新
|
490次组卷
|
1卷引用:广西壮族自治区贵百河三市2023-2024学年高一上学期12月联考数学试题
名校
4 . 已知函数,不等式的解集是.
(1)求的解析式;
(2)若存在,使得不等式有解,求实数的取值范围.
(1)求的解析式;
(2)若存在,使得不等式有解,求实数的取值范围.
您最近一年使用:0次
2024-01-22更新
|
476次组卷
|
5卷引用:广东省清远市2023-2024学年高一上学期期末教学质量检测数学试卷
名校
解题方法
5 . 已知函数.
(1)当时,解关于x的不等式;
(2)若存在,使得不等式成立,求实数m的取值范围.
(1)当时,解关于x的不等式;
(2)若存在,使得不等式成立,求实数m的取值范围.
您最近一年使用:0次
2023-12-28更新
|
566次组卷
|
1卷引用:河北省保定市唐县第一中学2023-2024学年高一上学期期中数学试题
名校
解题方法
6 . 已知函数.
(1)判断的奇偶性,并说明理由;
(2)判断在上的单调性,并用定义证明;
(3)求在上的值域.
(1)判断的奇偶性,并说明理由;
(2)判断在上的单调性,并用定义证明;
(3)求在上的值域.
您最近一年使用:0次
2023-12-27更新
|
404次组卷
|
1卷引用:云南省昆明市云南师范大学附属中学2023-2024学年高一上学期教学测评月考(四)(12月)数学试题
名校
解题方法
7 . 已知函数是定义在上的奇函数.
(1)求实数,的值:
(2)试判断函数的单调性并用单调性的定义证明;
(3)若对任意的,不等式恒成立,求实数的取值范围.
(1)求实数,的值:
(2)试判断函数的单调性并用单调性的定义证明;
(3)若对任意的,不等式恒成立,求实数的取值范围.
您最近一年使用:0次
2023-12-24更新
|
954次组卷
|
2卷引用:黑龙江省大庆市实验中学实验一部2023-2024学年高一上学期期中数学试题
解题方法
8 . 已知全集为,集合,,.
(1)若,求,;
(2)若,求实数的取值范围.
(1)若,求,;
(2)若,求实数的取值范围.
您最近一年使用:0次
2023-12-20更新
|
605次组卷
|
2卷引用:天津市南开区2023-2024学年高一上学期阶段性质量监测(一)数学试题
名校
9 . 设区间a是函数定义域的一个子集,若存在,使得成立,则称是的一个“不动点”,也称在区间a上存在“不动点”,例如的“不动点”满足,即的“不动点”是.
(1)若函数有两个互为相反数的“不动点”,求实数a的值:
(2)若函数在区间上不存在 “不动点”,求实数a的取值范围.
(1)若函数有两个互为相反数的“不动点”,求实数a的值:
(2)若函数在区间上
您最近一年使用:0次
2023-12-20更新
|
442次组卷
|
2卷引用:黑龙江省哈尔滨市第九中学校2023-2024学年高一上学期12月月考数学试卷
名校
解题方法
10 . 已知是偶函数.
(1)求实数的值;
(2)用定义法证明函数在上的单调性;
(3)解不等式.
(1)求实数的值;
(2)用定义法证明函数在上的单调性;
(3)解不等式.
您最近一年使用:0次
2023-12-19更新
|
294次组卷
|
1卷引用:河南省安阳市第一中学2023-2024学年高一上学期第二次阶段考试数学试题
跳转: 页