来源:
题型:
难度:
分类:
1 . 已知函数的最小值为1,最小正周期为,且的图象关于直线对称.
(1)求的解析式;
(2)将函数的图象向左平移个单位长度,得到函数,求函数在上的单调递减区间.
(1)求的解析式;
(2)将函数的图象向左平移个单位长度,得到函数,求函数在上的单调递减区间.
您最近半年使用:0次
今日更新
|
68次组卷
|
1卷引用:湖南省长沙市明德中学2023-2024学年高一上学期期末考试数学试卷
名校
解题方法
2 . 设函数,其中,已知.
(1)求的值;
(2)将函数的图象上各点的横坐标伸长为原来的倍(纵坐标不变),再将得到的图象向左平移个单位,得到函数的图象,求在上的最值并写出取最值时的值.
(1)求的值;
(2)将函数的图象上各点的横坐标伸长为原来的倍(纵坐标不变),再将得到的图象向左平移个单位,得到函数的图象,求在上的最值并写出取最值时的值.
您最近半年使用:0次
今日更新
|
186次组卷
|
1卷引用:湖南省张家界市慈利县第一中学2023-2024学年高一上学期期末复习数学试题(二)
名校
解题方法
3 . 已知函数和的定义域分别为和,若对任意的都恰有个不同的实数,使得(其中),则称为的“重覆盖函数”.(1)若函数是的“重覆盖函数”,则______ ;(2)若为的“2重覆盖函数”,记实数的最大值为,则______ .
您最近半年使用:0次
4 . 已知函数,则( )
a.的定义域为 | b.的值域为r |
c.为增函数 | d.的图象关于坐标原点对称 |
您最近半年使用:0次
今日更新
|
23次组卷
|
1卷引用:湖南省株洲方舟兰天高级中学2023-2024年高一上学期期末考试数学试卷
解题方法
5 . 已知函数在定义域上为减函数,且值域为
(1)证明:;
(2)求实数m的取值范围;
(3)求的最大值.
(1)证明:;
(2)求实数m的取值范围;
(3)求的最大值.
您最近半年使用:0次
今日更新
|
15次组卷
|
1卷引用:湖南省株洲方舟兰天高级中学2023-2024年高一上学期期末考试数学试卷
解题方法
6 . 已知为二次函数,,不等式的解集为.
(1)求的解析式;
(2)若函数在上的值域为,求s,t满足的条件.
(1)求的解析式;
(2)若函数在上的值域为,求s,t满足的条件.
您最近半年使用:0次
今日更新
|
24次组卷
|
1卷引用:湖南省株洲方舟兰天高级中学2023-2024年高一上学期期末考试数学试卷
解题方法
7 . 已知函数,且.
(1)求的定义域与最小正周期;
(2)当时,求的值域
(1)求的定义域与最小正周期;
(2)当时,求的值域
您最近半年使用:0次
今日更新
|
39次组卷
|
1卷引用:湖南省株洲方舟兰天高级中学2023-2024年高一上学期期末考试数学试卷
解题方法
8 . 已知函数.
(1)若函数为偶函数,求实数m的值;
(2)若函数的定义域为,求实数m的取值范围.
(1)若函数为偶函数,求实数m的值;
(2)若函数的定义域为,求实数m的取值范围.
您最近半年使用:0次
今日更新
|
24次组卷
|
1卷引用:湖南省株洲方舟兰天高级中学2023-2024年高一上学期期末考试数学试卷
9 . 求下列各式的值:
(1);
(2).
(1);
(2).
您最近半年使用:0次
今日更新
|
42次组卷
|
1卷引用:湖南省株洲方舟兰天高级中学2023-2024年高一上学期期末考试数学试卷
10 . 若函数在上的最大值为2,则实数_______ .
您最近半年使用:0次
今日更新
|
28次组卷
|
1卷引用:湖南省株洲方舟兰天高级中学2023-2024年高一上学期期末考试数学试卷
跳转: 页