题型:
难度:
分类:
名校
解题方法
1 . 已知点,动点满足.
(1)求点的轨迹的方程;
(2)若轨迹的左右顶点分别为,直线与直线交于点,直线与轨迹交于相异的两点,当点不在轴上时,分别记直线与的斜率为 ,,求证: 是定值.
(1)求点的轨迹的方程;
(2)若轨迹的左右顶点分别为,直线与直线交于点,直线与轨迹交于相异的两点,当点不在轴上时,分别记直线与的斜率为 ,,求证: 是定值.
您最近半年使用:0次
名校
2 . 盐城沿海滩涂湿地现已发现高等植物559种、动物1665种,经研究发现其中某生物种群数量的增长规律可以用逻辑斯谛模型刻画,其中是该种群的内禀增长率,若,则时的瞬时变化率为_________________________ .
您最近半年使用:0次
3 . 在高层建筑中,为了优化建筑结构,减少风荷载影响,设计师可能会将建筑设计成底面楼层高度比较高,随着楼层往上逐步按照等比数列递减的“金字塔”形状,已知某高层建筑共10层,第2层高度为,第层高度记为,是公比为的等比数列,若第层高度小于,则的最小值为( )
a.6 | b.5 | c.4 | d.3 |
您最近半年使用:0次
今日更新
|
0次组卷
|
1卷引用:广东省河源市2023-2024学年高二上学期期末考试数学试题
4 . 某校高二(1)班的元旦联欢会设计了一项抽奖游戏:准备了张相同的卡片,其中只在张卡片上印有“奖”字.
(1)采取放回抽样方式,从中依次抽取张卡片,求抽到印有“奖”字卡片张数的分布列、数学期望及方差;
(2)采取不放回抽样方式,从中依次抽取张卡片,求第一次抽到印有“奖”字卡片的条件下,第三次抽到未印有“奖”字卡片的概率.
(1)采取放回抽样方式,从中依次抽取张卡片,求抽到印有“奖”字卡片张数的分布列、数学期望及方差;
(2)采取不放回抽样方式,从中依次抽取张卡片,求第一次抽到印有“奖”字卡片的条件下,第三次抽到未印有“奖”字卡片的概率.
您最近半年使用:0次
5 . 有下列命题:
①抛物线的准线方程为;
②已知直线过两点,,则此直线的斜率是;
③若方程表示双曲线,则实数的取值范围是.
其中正确命题的序号为________ (把正确的答案都填上).
①抛物线的准线方程为;
②已知直线过两点,,则此直线的斜率是;
③若方程表示双曲线,则实数的取值范围是.
其中正确命题的序号为
您最近半年使用:0次
6 . 已知某地中学生的男生和女生的人数比例是,为了解该地中学生对羽毛球和乒乓球的喜欢情况,现随机抽取部分中学生进行调查,了解到该地中学生喜欢羽毛球和乒乓球的概率如下表:
(1)从该地中学生中随机抽取1人,已知抽取的这名中学生喜欢羽毛球,求该中学生也喜欢乒乓球的概率;
(2)从该地中学生中随机抽取100人,记抽取到的中学生既喜欢羽毛球,又喜欢乒乓球的人数为,求的分布列和期望.
男生 | 女生 | |
只喜欢羽毛球 | 0.3 | 0.3 |
只喜欢乒乓球 | 0.25 | 0.2 |
既喜欢羽毛球,又喜欢乒乓球 | 0.3 | 0.15 |
(2)从该地中学生中随机抽取100人,记抽取到的中学生既喜欢羽毛球,又喜欢乒乓球的人数为,求的分布列和期望.
您最近半年使用:0次
7 . 是定义在上的函数,那么下列函数:①;②;③中,满足性质“存在两个不等实数,使得”,的函数个数为( )
a.0 | b.1 | c.2 | d.3 |
您最近半年使用:0次
今日更新
|
58次组卷
|
2卷引用: 上海市上海师范大学附属中学宝山分校2023-2024学年高一上学期期末数学试卷
8 . 三名学生各自在篮球、羽毛球、乒乓球三个运动项目中任选一个参加,则三个项目都有学生参加的概率为( )
a. | b. | c. | d. |
您最近半年使用:0次
今日更新
|
106次组卷
|
2卷引用:青海省西宁市大通县2024届高三上学期期末数学(理)试题
解题方法
9 . 已知函数满足:,,,,,则( )
a.为奇函数 | b. |
c.方程有三个实根 | d.在上单调递增 |
您最近半年使用:0次
今日更新
|
30次组卷
|
1卷引用:浙江省温州市2023-2024学年高一上学期期末教学质量统一检测数学试题(a卷)
解题方法
10 . 已知非空集合且,设,,则对于的关系,下列问题正确的是( )
a. | b. | c. | d.的关系无法确定 |
您最近半年使用:0次
今日更新
|
113次组卷
|
1卷引用:上海市青浦区2023-2024学年高一上学期期末学业质量调研数学试卷
跳转: 页