题型:
难度:
分类:
解答题-问答题
|
困难(0.15)
|
真题
名校
解题方法
1 . 已知数列的项数均为m,且的前n项和分别为,并规定.对于,定义,其中,表示数集m中最大的数.
(1)若,求的值;
(2)若,且,求;
(3)证明:存在,满足 使得.
(1)若,求的值;
(2)若,且,求;
(3)证明:存在,满足 使得.
您最近半年使用:0次
2023-06-19更新
|
5485次组卷
|
6卷引用:2023年北京高考数学真题
(已下线)2023年北京高考数学真题变式题16-21(已下线)专题05 等比数列与数列综合求和-2023-2024学年高二数学期末复习重难培优与单元检测(人教a版2019)
真题
名校
2 . 为研究某种农产品价格变化的规律,收集得到了该农产品连续40天的价格变化数据,如下表所示.在描述价格变化时,用“ ”表示“上涨”,即当天价格比前一天价格高;用“-”表示“下跌”,即当天价格比前一天价格低;用“0”表示“不变”,即当天价格与前一天价格相同.
用频率估计概率.
(1)试估计该农产品价格“上涨”的概率;
(2)假设该农产品每天的价格变化是相互独立的.在未来的日子里任取4天,试估计该农产品价格在这4天中2天“上涨”、1天“下跌”、1天“不变”的概率;
(3)假设该农产品每天的价格变化只受前一天价格变化的影响.判断第41天该农产品价格“上涨”“下跌”和“不变”的概率估计值哪个最大.(结论不要求证明)
时段 | 价格变化 | |||||||||||||||||||
第1天到第20天 | - | 0 | - | - | - | 0 | 0 | - | - | - | 0 | 0 | ||||||||
第21天到第40天 | 0 | 0 | - | - | - | 0 | 0 | - | - | - | 0 | - |
(1)试估计该农产品价格“上涨”的概率;
(2)假设该农产品每天的价格变化是相互独立的.在未来的日子里任取4天,试估计该农产品价格在这4天中2天“上涨”、1天“下跌”、1天“不变”的概率;
(3)假设该农产品每天的价格变化只受前一天价格变化的影响.判断第41天该农产品价格“上涨”“下跌”和“不变”的概率估计值哪个最大.(结论不要求证明)
您最近半年使用:0次
2023-06-19更新
|
6251次组卷
|
10卷引用:2023年北京高考数学真题
(已下线)2023年北京高考数学真题变式题16-21(已下线)第四篇 概率与统计 专题7 常见分布 微点1 常见分布(已下线)第07讲 离散型随机变量的分布列与数字特征(练习)(已下线)考点13 二项分布与超级几何分布 2024届高考数学考点总动员(已下线)考点18 决策的选择问题 2024届高考数学考点总动员
真题
名校
解题方法
3 . 设,函数,给出下列四个结论:
①在区间上单调递减;
②当时,存在最大值;
③设,则;
④设.若存在最小值,则a的取值范围是.
其中所有正确结论的序号是____________ .
①在区间上单调递减;
②当时,存在最大值;
③设,则;
④设.若存在最小值,则a的取值范围是.
其中所有正确结论的序号是
您最近半年使用:0次
2023-06-19更新
|
6359次组卷
|
10卷引用:2023年北京高考数学真题
(已下线)2023年北京高考数学真题变式题11-15(已下线)考点2 分段函数 2024届高考数学考点总动员 (讲)(已下线)第07讲 函数与方程(练习)(已下线)第一讲:数形结合思想【练】(已下线)专题2 函数的性质综合应用【练】 模块3 变量关系篇(函数)高三清北学霸150分晋级必备
4 . 我国度量衡的发展有着悠久的历史,战国时期就已经出现了类似于砝码的、用来测量物体质量的“环权”.已知9枚环权的质量(单位:铢)从小到大构成项数为9的数列,该数列的前3项成等差数列,后7项成等比数列,且,则___________ ;数列所有项的和为____________ .
您最近半年使用:0次
2023-06-19更新
|
7049次组卷
|
14卷引用:2023年北京高考数学真题
(已下线)2023年北京高考数学真题变式题11-15(已下线)专题18 数列中的创新题的解法 微点2 数列中的创新题综合训练(已下线)模块二 专题1 数 列 b提升卷(人教a)(已下线)模块一 情境3 以数列为背景(已下线)考点巩固卷15 等比数列(八大考点)北京市东直门中学2023-2024学年高一上学期期中考试数学试题(已下线)考点5 等比数列的基本量及其性质 2024届高考数学考点总动员(已下线)考点8 等差、等比数列的实际应用 2024届高考数学考点总动员
真题
名校
解题方法
5 . 已知数列满足,则( )
a.当时,为递减数列,且存在常数,使得恒成立 |
b.当时,为递增数列,且存在常数,使得恒成立 |
c.当时,为递减数列,且存在常数,使得恒成立 |
d.当时,为递增数列,且存在常数,使得恒成立 |
您最近半年使用:0次
2023-06-19更新
|
6321次组卷
|
9卷引用:2023年北京高考数学真题
单选题
|
适中(0.65)
|
6 . 坡屋顶是我国传统建筑造型之一,蕴含着丰富的数学元素.安装灯带可以勾勒出建筑轮廓,展现造型之美.如图,某坡屋顶可视为一个五面体,其中两个面是全等的等腰梯形,两个面是全等的等腰三角形.若,且等腰梯形所在的平面、等腰三角形所在的平面与平面的夹角的正切值均为,则该五面体的所有棱长之和为( )
a. | b. |
c. | d. |
您最近半年使用:0次
2023-06-19更新
|
6846次组卷
|
11卷引用:2023年北京高考数学真题
(已下线)第04讲 利用几何法解决空间角和距离19种常见考法归类(5)(已下线)2023年北京高考数学真题变式题6-10(已下线)北京十年真题专题07立体几何与空间向量(已下线)考点9 垂直的判定与性质 2024届高考数学考点总动员
真题
名校
解题方法
7 . 一项试验旨在研究臭氧效应.实验方案如下:选40只小白鼠,随机地将其中20只分配到实验组,另外20只分配到对照组,实验组的小白鼠饲养在高浓度臭氧环境,对照组的小白鼠饲养在正常环境,一段时间后统计每只小白鼠体重的增加量(单位:g).
(1)设表示指定的两只小白鼠中分配到对照组的只数,求的分布列和数学期望;
(2)实验结果如下:
对照组的小白鼠体重的增加量从小到大排序为:
15.2 18.8 20.2 21.3 22.5 23.2 25.8 26.5 27.5 30.1
32.6 34.3 34.8 35.6 35.6 35.8 36.2 37.3 40.5 43.2
实验组的小白鼠体重的增加量从小到大排序为:
7.8 9.2 11.4 12.4 13.2 15.5 16.5 18.0 18.8 19.2
19.8 20.2 21.6 22.8 23.6 23.9 25.1 28.2 32.3 36.5
(i)求40只小鼠体重的增加量的中位数m,再分别统计两样本中小于m与不小于的数据的个数,完成如下列联表:
(ii)根据(i)中的列联表,能否有95%的把握认为小白鼠在高浓度臭氧环境中与正常环境中体重的增加量有差异.
附:
(1)设表示指定的两只小白鼠中分配到对照组的只数,求的分布列和数学期望;
(2)实验结果如下:
对照组的小白鼠体重的增加量从小到大排序为:
15.2 18.8 20.2 21.3 22.5 23.2 25.8 26.5 27.5 30.1
32.6 34.3 34.8 35.6 35.6 35.8 36.2 37.3 40.5 43.2
实验组的小白鼠体重的增加量从小到大排序为:
7.8 9.2 11.4 12.4 13.2 15.5 16.5 18.0 18.8 19.2
19.8 20.2 21.6 22.8 23.6 23.9 25.1 28.2 32.3 36.5
(i)求40只小鼠体重的增加量的中位数m,再分别统计两样本中小于m与不小于的数据的个数,完成如下列联表:
对照组 | ||
实验组 |
附:
0.100 | 0.050 | 0.010 | |
2.706 | 3.841 | 6.635 |
您最近半年使用:0次
2023-06-09更新
|
12118次组卷
|
11卷引用:2023年高考全国甲卷数学(理)真题
(已下线)2023年高考全国甲卷数学(理)真题变式题16-20(已下线)专题09 计数原理与概率统计-1(已下线)第07讲 离散型随机变量的分布列与数字特征(练习)(已下线)考点17 列联表与独立性检验 2024届高考数学考点总动员(已下线)第七章 统计案例(单元综合检测卷)-2023-2024学年高二数学同步精品课堂(北师大版2019选择性必修第一册)
单选题
|
较易(0.85)
|
真题
解题方法
8 . 现有5名志愿者报名参加公益活动,在某一星期的星期六、星期日两天,每天从这5人中安排2人参加公益活动,则恰有1人在这两天都参加的不同安排方式共有( )
a.120 | b.60 | c.30 | d.20 |
您最近半年使用:0次
2023-06-09更新
|
12804次组卷
|
10卷引用:2023年高考全国甲卷数学(理)真题
(已下线)2023年高考全国甲卷数学(理)真题变式题6-10(已下线)专题09 计数原理与概率统计-1(已下线)第一节 计数原理(核心考点集训)(已下线)考点01 排列中的模型 2024届高考数学考点总动员【讲】(已下线)艺体生一轮复习 第九章 计数原理、概率与统计 第42讲 计数原理、排列与组合【讲】(已下线)重难点02:排列组合高考真题赏析-2023-2024学年高二数学同步精品课堂(北师大版2019选择性必修第一册)
真题
名校
9 . 某地的中学生中有的同学爱好滑冰,的同学爱好滑雪,的同学爱好滑冰或爱好滑雪.在该地的中学生中随机调查一位同学,若该同学爱好滑雪,则该同学也爱好滑冰的概率为( )
a.0.8 | b.0.6 | c.0.5 | d.0.4 |
您最近半年使用:0次
2023-06-09更新
|
12574次组卷
|
11卷引用:2023年高考全国甲卷数学(理)真题
(已下线)模块二 专题4 《随机变量及其分布》单元检测篇 b提升卷(人教a)(已下线)模块二 专题2 《概率》单元检测篇 b提升卷(北师大2019版)(已下线)2023年高考全国甲卷数学(理)真题变式题6-10(已下线)模块二 专题3《概率》单元检测篇 b提升卷(苏教版)(已下线)专题09 计数原理与概率统计-1(已下线)考点11 条件概率与全概率公式 2024届高考数学考点总动员【练】
真题
名校
10 . 某厂为比较甲乙两种工艺对橡胶产品伸缩率的处理效应,进行10次配对试验,每次配对试验选用材质相同的两个橡胶产品,随机地选其中一个用甲工艺处理,另一个用乙工艺处理,测量处理后的橡胶产品的伸缩率.甲、乙两种工艺处理后的橡胶产品的伸缩率分别记为,.试验结果如下:
记,记的样本平均数为,样本方差为.
(1)求,;
(2)判断甲工艺处理后的橡胶产品的伸缩率较乙工艺处理后的橡胶产品的伸缩率是否有显著提高(如果,则认为甲工艺处理后的橡胶产品的伸缩率较乙工艺处理后的橡胶产品的伸缩率有显著提高,否则不认为有显著提高)
试验序号 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
伸缩率 | 545 | 533 | 551 | 522 | 575 | 544 | 541 | 568 | 596 | 548 |
伸缩率 | 536 | 527 | 543 | 530 | 560 | 533 | 522 | 550 | 576 | 536 |
(1)求,;
(2)判断甲工艺处理后的橡胶产品的伸缩率较乙工艺处理后的橡胶产品的伸缩率是否有显著提高(如果,则认为甲工艺处理后的橡胶产品的伸缩率较乙工艺处理后的橡胶产品的伸缩率有显著提高,否则不认为有显著提高)
您最近半年使用:0次
2023-06-09更新
|
16658次组卷
|
18卷引用:2023年高考全国乙卷数学(理)真题
(已下线)2023年高考数学真题完全解读(全国乙卷文科)(已下线)2023年高考全国乙卷数学(文)真题变式题16-20(已下线)2023年高考全国乙卷数学(理)真题变式题16-20(已下线)专题09 计数原理与概率统计-1(已下线)模块一 情境8 以概率统计为背景(已下线)第01讲 统计(练习)(已下线)考点12 离散型随机变量的期望和方差 2024届高考数学考点总动员(已下线)考点18 决策的选择问题 2024届高考数学考点总动员
跳转: 页