来源:
题型:
难度:
分类:
1 . 某校高二(1)班的元旦联欢会设计了一项抽奖游戏:准备了张相同的卡片,其中只在张卡片上印有“奖”字.
(1)采取放回抽样方式,从中依次抽取张卡片,求抽到印有“奖”字卡片张数的分布列、数学期望及方差;
(2)采取不放回抽样方式,从中依次抽取张卡片,求第一次抽到印有“奖”字卡片的条件下,第三次抽到未印有“奖”字卡片的概率.
(1)采取放回抽样方式,从中依次抽取张卡片,求抽到印有“奖”字卡片张数的分布列、数学期望及方差;
(2)采取不放回抽样方式,从中依次抽取张卡片,求第一次抽到印有“奖”字卡片的条件下,第三次抽到未印有“奖”字卡片的概率.
您最近半年使用:0次
2 . 已知某地中学生的男生和女生的人数比例是,为了解该地中学生对羽毛球和乒乓球的喜欢情况,现随机抽取部分中学生进行调查,了解到该地中学生喜欢羽毛球和乒乓球的概率如下表:
(1)从该地中学生中随机抽取1人,已知抽取的这名中学生喜欢羽毛球,求该中学生也喜欢乒乓球的概率;
(2)从该地中学生中随机抽取100人,记抽取到的中学生既喜欢羽毛球,又喜欢乒乓球的人数为,求的分布列和期望.
男生 | 女生 | |
只喜欢羽毛球 | 0.3 | 0.3 |
只喜欢乒乓球 | 0.25 | 0.2 |
既喜欢羽毛球,又喜欢乒乓球 | 0.3 | 0.15 |
(2)从该地中学生中随机抽取100人,记抽取到的中学生既喜欢羽毛球,又喜欢乒乓球的人数为,求的分布列和期望.
您最近半年使用:0次
解题方法
3 . 已知甲、乙两支登山队均有n名队员,现有新增的4名登山爱好者将依次通过摸出小球的颜色来决定其加入哪支登山队,规则如下:在一个不透明的箱中放有红球和黑球各2个,小球除颜色不同之外,其余完全相同先由第一名新增登山爱好者从箱中不放回地摸出1个小球,再另取完全相同的红球和黑球各1个放入箱中;接着由下一名新增登山爱好者摸出1个小球后,再放入完全相同的红球和黑球各1个,如此重复,直至所有新增登山爱好者均摸球和放球完毕.新增登山爱好者若摸出红球,则被分至甲队,否则被分至乙队.
(1)求三人均被分至同一队的概率;
(2)记甲,乙两队的最终人数分别为,,设随机变量,求.
(1)求三人均被分至同一队的概率;
(2)记甲,乙两队的最终人数分别为,,设随机变量,求.
您最近半年使用:0次
解题方法
4 . 一个袋子中有10个大小相同的球,其中红球7个,黑球3个.每次从袋中随机摸出1个球,摸出的球不再放回.
(1)求第2次摸到红球的概率;
(2)设第次都摸到红球的概率为;第1次摸到红球的概率为;在第1次摸到红球的条件下,第2次摸到红球的概率为;在第1,2次都摸到红球的条件下,第3次摸到红球的概率为.求;
(3)对于事件,当时,写出的等量关系式,并加以证明.
(1)求第2次摸到红球的概率;
(2)设第次都摸到红球的概率为;第1次摸到红球的概率为;在第1次摸到红球的条件下,第2次摸到红球的概率为;在第1,2次都摸到红球的条件下,第3次摸到红球的概率为.求;
(3)对于事件,当时,写出的等量关系式,并加以证明.
您最近半年使用:0次
今日更新
|
237次组卷
|
1卷引用:福建省泉州市2024届高三上学期质量监测数学试题(二)
智能选题,一键自动生成优质试卷~
2024·全国·模拟预测
解题方法
5 . 盒子中装有红球、白球等多种不同颜色的小球,现从盒子中一次摸一个球.不放回.
(1)若盒子中有8个球,其中有3个红球,从中任意摸两次.记摸出的红球个数为.求随机变量的分布列和数学期望.
(2)若盒中有4个红球和4个白球,盒中在2个红球和2个白球.现甲、乙、丙三人依次从号盒中摸出一个球并放入号盒,然后丁从号盒中任取一球.已知丁取到红球,求甲、乙、丙三人中至少有一人取出白球的概率.
(1)若盒子中有8个球,其中有3个红球,从中任意摸两次.记摸出的红球个数为.求随机变量的分布列和数学期望.
(2)若盒中有4个红球和4个白球,盒中在2个红球和2个白球.现甲、乙、丙三人依次从号盒中摸出一个球并放入号盒,然后丁从号盒中任取一球.已知丁取到红球,求甲、乙、丙三人中至少有一人取出白球的概率.
您最近半年使用:0次
解题方法
6 . 《国家学生体质健康标准》是我国对学生体质健康方面的基本要求,是综合评价学生综合素质的重要依据.为促进学生积极参加体育锻炼,养成良好的锻炼习惯,提高体质健康水平,某学校从全校学生中随机抽取200名学生进行“是否喜欢体育锻炼”的问卷调查.获得如下信息:
①男生所占比例为;
②不喜欢体育锻炼的学生所占比例为;
③喜欢体育锻炼的男生比喜欢体育锻炼的女生多50人.
(1)完成列联表,依据小概率值的独立性检验,分析喜欢体育锻炼与性别是否有关联?
(2)(ⅰ)从这200名学生中采用按比例分配的分层随机抽样方法抽取20人,再从这20人中随机抽取3人.记事件“至少有2名男生”、“至少有2名喜欢体育锻炼的男生”、“至多有1名喜欢体育锻炼的女生”.请计算和的值.
(ⅱ)对于随机事件,,,试分析与的大小关系,并给予证明
参考公式及数据:,.
①男生所占比例为;
②不喜欢体育锻炼的学生所占比例为;
③喜欢体育锻炼的男生比喜欢体育锻炼的女生多50人.
(1)完成列联表,依据小概率值的独立性检验,分析喜欢体育锻炼与性别是否有关联?
性别 | 体育锻炼 | 合计 | |
喜欢 | 不喜欢 | ||
男 | |||
女 | |||
合计 |
(ⅱ)对于随机事件,,,试分析与的大小关系,并给予证明
参考公式及数据:,.
0.10 | 0.05 | 0.010 | 0.001 | |
2.706 | 3.841 | 6.635 | 10.828 |
您最近半年使用:0次
昨日更新
|
34次组卷
|
1卷引用:广东省汕头市2024届高三上学期期末调研测试数学试题
解题方法
7 . 设a,b是一次随机试验中的两个事件,且,,,则( )
a.a,b相互独立 | b. | c. | d. |
您最近半年使用:0次
昨日更新
|
426次组卷
|
1卷引用:湖北省武汉市江岸区2024届高三上学期1月调考数学试题
名校
解题方法
8 . 2023年第31届大学生夏季运动会在成都举行,中国运动员在赛场上挑战自我,突破极限,以拼搏的姿态,展竞技之美,攀体育高峰.最终,中国代表团以103枚金牌、40枚银牌、35枚铜牌,总计178放奖牌的成绩,位列金牌榜和奖牌榜双第一,引发了大学生积极进行体育锻炼的热情.已知甲、乙两名大学生每天上午、下午都进行体育锻炼,近50天选择体育锻炼项目情况统计如下:
假设甲、乙上午、下午选择锻炼的项目相互独立,用频率估计概率.
(1)已知甲上午选择足球的条件下,下午仍选择足球的概率为,请将表格内容补充完整;(写出计算过程)
(2)记为甲、乙在一天中选择体育锻炼项目的个数差,求的分布列和数学期望;
(3)已知在这50天中上午室外温度在20度以下的概率为,并且当上午的室外温度低于20度时,甲去打羽毛球的概率为,若已知某天上午甲去打羽毛球,求这一天上午室外温度在20度以下的概率.
体育锻炼目的情况 (上午,下午) | (足球,足球) | (足球,羽毛球) | (羽毛球,足球) | (羽毛球,羽毛球) |
甲 | 20天 | 10天 | ||
乙 | 10天 | 10天 | 5天 | 25天 |
(1)已知甲上午选择足球的条件下,下午仍选择足球的概率为,请将表格内容补充完整;(写出计算过程)
(2)记为甲、乙在一天中选择体育锻炼项目的个数差,求的分布列和数学期望;
(3)已知在这50天中上午室外温度在20度以下的概率为,并且当上午的室外温度低于20度时,甲去打羽毛球的概率为,若已知某天上午甲去打羽毛球,求这一天上午室外温度在20度以下的概率.
您最近半年使用:0次
解题方法
9 . 下列结论正确的是( )
a.已知样本数据的方差为2,则数据的方差为4 |
b.已知概率,则 |
c.样本数据6,8,8,7,9,10,8的第75百分位数为8.5 |
d.已知(为有理数),则 |
您最近半年使用:0次
昨日更新
|
247次组卷
|
1卷引用:湖南省永州市2024届高考第二次模拟考试数学试题
名校
解题方法
10 . 一只蚂蚁位于数轴处,这只蚂蚁每隔一秒钟向左或向右移动一个单位长度,设它向右移动的概率为,向左移动的概率为.
(1)已知蚂蚁2秒后所在位置对应的实数为非负数,求2秒后这只蚂蚁在处的概率;
(2)记蚂蚁4秒后所在位置对应的实数为,求的分布列与期望.
(1)已知蚂蚁2秒后所在位置对应的实数为非负数,求2秒后这只蚂蚁在处的概率;
(2)记蚂蚁4秒后所在位置对应的实数为,求的分布列与期望.
您最近半年使用:0次
昨日更新
|
825次组卷
|
7卷引用:河南省驻马店市部分学校2024届高三上学期期末联考数学试题
(已下线)考点12 离散型随机变量的期望和方差 2024届高考数学考点总动员【练】
跳转: 页