题型:
难度:
分类:
判断题
|
较易(0.85)
|
1 . 判断正误(正确的打“√”,错误的打“×”)
(1)函数在一点处的导数f′(x0)是一个常数.( )
(2)函数y=f(x)在点x0处的导数f′(x0)就是导函数f′(x)在点x=x0处的函数值.( )
(3)函数f(x)=0没有导函数.( )
(4)直线与曲线相切,则直线与已知曲线只有一个公共点.( )
(1)函数在一点处的导数f′(x0)是一个常数.
(2)函数y=f(x)在点x0处的导数f′(x0)就是导函数f′(x)在点x=x0处的函数值.
(3)函数f(x)=0没有导函数.
(4)直线与曲线相切,则直线与已知曲线只有一个公共点.
您最近半年使用:0次
2024-01-18更新
|
41次组卷
|
1卷引用:人教a版(2019) 选修第二册 数学奇书 第五章 一元函数的导数及其应用 5.1 导数的概念及其意义 5.1.2 导数的概念及其几何意义 第2课时 导数的几何意义
21-22高一下·四川乐山·期末
名校
2 . 已知,下列命题正确的是( )
a.若,则 | b.若,则 |
c.若,则 | d.若,则 |
您最近半年使用:0次
2024-01-13更新
|
335次组卷
|
9卷引用:突破2.1 等式的性质与不等式的性质(重难点突破)
(已下线)突破2.1 等式的性质与不等式的性质(重难点突破)(已下线)2.1等式性质与不等式性质【第二练】
2023·四川成都·一模
解题方法
3 . 某校高中阶段实行体育模块化课程教学,在高一年级开设了篮球和羽毛球两个模块课程,从该校高一年级随机抽取的100名男生和100名女生中,统计出参加上述课程的情况如下:
(1)根据上述列联表,是否有的把握认为该校高一年级体育模块化课程的选择与性别有关;
(2)根据抽取的200名学生的模块化课程成绩,每个模块课程的前3名获得参加体育模块化教学推广大使的评选资格,若在有评选资格的6名学生中随机选出2人作为体育模块化课程教学的推广大使,记这两人中来自篮球模块化课程的人数为,求的分布列和期望.
附:.
男生 | 女生 | 总计 | |
参加篮球模块课程人数 | 60 | 20 | 80 |
参加羽毛球模块课程人数 | 40 | 80 | 120 |
总计 | 100 | 100 | 200 |
(2)根据抽取的200名学生的模块化课程成绩,每个模块课程的前3名获得参加体育模块化教学推广大使的评选资格,若在有评选资格的6名学生中随机选出2人作为体育模块化课程教学的推广大使,记这两人中来自篮球模块化课程的人数为,求的分布列和期望.
附:.
0.025 | 0.010 | 0.005 | 0.001 | |
5.024 | 6.635 | 7.879 | 10.828 |
您最近半年使用:0次
2023-12-25更新
|
388次组卷
|
3卷引用:7.3独立性检验问题(分层练习)-2023-2024学年高二数学同步精品课堂(北师大版2019选择性必修第一册)
(已下线)7.3独立性检验问题(分层练习)-2023-2024学年高二数学同步精品课堂(北师大版2019选择性必修第一册)(已下线)模块三 专题7 大题分类练(概率)基础夯实练
2023·全国·模拟预测
4 . 下列说法错误的是( )
a.将列联表中的每一个数变成原来的2倍,则卡方变成原来的2倍 |
b.两组数据相关系数r的绝对值越大,则对应的回归直线越陡 |
c.若事件a,b满足,则 |
d.若事件a,b满足,则事件a,b是对立事件 |
您最近半年使用:0次
2023-12-24更新
|
176次组卷
|
2卷引用:7.3独立性检验问题(分层练习)-2023-2024学年高二数学同步精品课堂(北师大版2019选择性必修第一册)
(已下线)7.3独立性检验问题(分层练习)-2023-2024学年高二数学同步精品课堂(北师大版2019选择性必修第一册)(已下线)2024年全国高考名校名师联席命制型数学信息卷(六)
判断题
|
较易(0.85)
|
5 . 判断正误(正确的填“正确”,错误的填“错误”)
(1)曲线上给定一点,过点可以作该曲线的无数条割线.( )
(2)表示,的值可正可负,也可以为零.( )
(3)函数在处的导数值与的正、负无关.( )
(4)若,则.( )
(1)曲线上给定一点,过点可以作该曲线的无数条割线.
(2)表示,的值可正可负,也可以为零.
(3)函数在处的导数值与的正、负无关.
(4)若,则.
您最近半年使用:0次
2023-12-21更新
|
119次组卷
|
1卷引用:人教a版(2019) 选修第二册 数学奇书 第五章 一元函数的导数及其应用 5.1 导数的概念及其意义 5.1.2 导数的概念及其几何意义 第1课时 导数的概念
解题方法
6 . 判断正误(正确的填“正确”,错误的填“错误”)
(1)当时,为递增数列.( )
(2)当时,为常数列.( )
(3)是等比数列,若,则.( )
(4)若等比数列的公比是,则().( )
(1)当时,为递增数列.
(2)当时,为常数列.
(3)是等比数列,若,则.
(4)若等比数列的公比是,则().
您最近半年使用:0次
2023-12-20更新
|
67次组卷
|
1卷引用:人教a版(2019) 选修第二册 数学奇书 第四章 数列 4.3等比数列 4.3.1 等比数列的概念 第2课时 等比数列的性质及应用
7 . 某一运动物体,在时离开出发点的距离(单位:m)是.
(1)求在第s内的平均速度;
(2)求在第s末的瞬时速度;
(3)经过多少时间该物体的运动速度达到m/s?
(1)求在第s内的平均速度;
(2)求在第s末的瞬时速度;
(3)经过多少时间该物体的运动速度达到m/s?
您最近半年使用:0次
2023-12-20更新
|
196次组卷
|
3卷引用:人教a版(2019) 选修第二册 数学奇书 第五章 一元函数的导数及其应用 5.1 导数的概念及其意义 5.1.2 导数的概念及其几何意义 第1课时 导数的概念
人教a版(2019) 选修第二册 数学奇书 第五章 一元函数的导数及其应用 5.1 导数的概念及其意义 5.1.2 导数的概念及其几何意义 第1课时 导数的概念(已下线)专题01 导数的概念及其意义 (九大题型)-【寒假自学课】2024年高二数学寒假提升学与练(人教a版2019)(已下线)结业测试卷(范围:第五、六、七章)(基础篇)-【寒假预科讲义】2024年高二数学寒假精品课(人教a版2019)
判断题
|
较易(0.85)
|
解题方法
8 . 判断正误(正确的写正确,错误的写错误)
(1)求等比数列的前n项和时可直接套用公式来求.( )
(2)首项为a的数列既是等差数列又是等比数列,则其前n项和为.( )
(3)若某数列的前n项和公式为,则此数列一定是等比数列.( )
(4)若数列的前n项和,则数列不是等比数列.( )
(1)求等比数列的前n项和时可直接套用公式来求.
(2)首项为a的数列既是等差数列又是等比数列,则其前n项和为.
(3)若某数列的前n项和公式为,则此数列一定是等比数列.
(4)若数列的前n项和,则数列不是等比数列.
您最近半年使用:0次
2023-12-20更新
|
46次组卷
|
1卷引用:人教a版(2019) 选修第二册 数学奇书 第四章 数列 4.3等比数列 4.3.2等比数列的前n项和公式 第1课时 等比数列的前n项和
9 . 判断正误(正确的填“正确”,错误的“错误”)
(1)已知等差数列的首项、公差,可求s10.( )
(2)在等差数列中涉及a1,d,n,an,sn五个量,利用方程思想可以“知三求二” .( )
(3)在等差数列{an}中,若a1=2,a9=10,则s9=45.( )
(4)公式an=sn-sn-1成立的条件是n∈n*.( )
(1)已知等差数列的首项、公差,可求s10.
(2)在等差数列中涉及a1,d,n,an,sn五个量,利用方程思想可以“知三求二” .
(3)在等差数列{an}中,若a1=2,a9=10,则s9=45.
(4)公式an=sn-sn-1成立的条件是n∈n*.
您最近半年使用:0次
2023-12-20更新
|
97次组卷
|
1卷引用:人教a版(2019) 选修第二册 数学奇书 第四章 数列 4.2等差数列 4.2.2 等差数列的前n项和公式 第1课时 等差数列的前n项和
10 . 已知为等差数列,分别根据下列条件写出它的通项公式.
(1),;
(2)前三项为.
(1),;
(2)前三项为.
您最近半年使用:0次
2023-12-20更新
|
173次组卷
|
1卷引用:人教a版(2019) 选修第二册 数学奇书 第四章 数列 4.2 等差数列 4.2.1 等差数列的概念 第1课时 等差数列的概念及简单表示
跳转: 页