题型:
难度:
1 . 某校高二(1)班的元旦联欢会设计了一项抽奖游戏:准备了张相同的卡片,其中只在张卡片上印有“奖”字.
(1)采取放回抽样方式,从中依次抽取张卡片,求抽到印有“奖”字卡片张数的分布列、数学期望及方差;
(2)采取不放回抽样方式,从中依次抽取张卡片,求第一次抽到印有“奖”字卡片的条件下,第三次抽到未印有“奖”字卡片的概率.
(1)采取放回抽样方式,从中依次抽取张卡片,求抽到印有“奖”字卡片张数的分布列、数学期望及方差;
(2)采取不放回抽样方式,从中依次抽取张卡片,求第一次抽到印有“奖”字卡片的条件下,第三次抽到未印有“奖”字卡片的概率.
您最近半年使用:0次
2024高三·全国·专题练习
2 . 为加快推动旅游业复苏,进一步增强居民旅游消费意愿,山东省人民政府规定自2023年1月21日起至3月31日在全省实施景区门票减免.据统计,活动开展以来游客至少去过两个及以上景区的人数占比为90%.某市旅游局从游客中随机抽取100人(其中年龄在50周岁及以下的有60人)了解他们对全省实施景区门票减免活动的满意度,并按年龄(50周岁及以下和50周岁以上)分类统计得到如下不完整的2×2列联表:
(1)根据统计数据完成以上2×2列联表,根据小概率值的独立性检验,能否认为对全省实施景区门票减免活动是否满意与年龄有关联(结果精确到0.01)?
(2)现从本市游客中随机抽取3人了解他们的出游情况,设其中至少去过两个及以上景区的人数为x,若以本次活动中至少去过两个及以上景区的人数的频率为概率,求x的分布列和数学期望.
参考公式及数据:,其中.
不满意 | 满意 | 总计 | |
50周岁及以下 | 55 | ||
50周岁以上 | 15 | ||
总计 | 100 |
(2)现从本市游客中随机抽取3人了解他们的出游情况,设其中至少去过两个及以上景区的人数为x,若以本次活动中至少去过两个及以上景区的人数的频率为概率,求x的分布列和数学期望.
参考公式及数据:,其中.
0.100 | 0.050 | 0.010 | 0.001 | |
2.706 | 3.841 | 6.635 | 10.828 |
您最近半年使用:0次
昨日更新
|
176次组卷
|
1卷引用:艺体生一轮复习 第九章 计数原理、概率与统计 第50讲 独立性检验【讲】
(已下线)艺体生一轮复习 第九章 计数原理、概率与统计 第50讲 独立性检验【讲】
3 . 李连贵熏肉大饼是吉林省四平市极具传统特色的美味小吃,有着悠久的历史,创始于1908年,距今已经有着一百多年的历史了.李连贵熏肉大饼的制作方法十分考究,选用猪肉和面粉为主要原料,将猪肉制作成熏肉,在加上公丁香,肉䓕,沙仁等几十种配料謷煮,最后加入调料抹在饼内,夹肉而食,吃起来外酥里软,美味可口,是一道集美味和药膳于一体的美味佳肴,很多外地游客慕名前往四平品尝.某调查机构从年龄在岁的游客中随机抽取100人,对是否有意向购买熏肉大饼进行调查,结果如下表:
(1)若以年龄40岁为分界线,由以上统计数据完成下面的列联表,并依据小概率值的独立性检验,能否认为购买熏肉大饼与人的年龄有关?
(2)用样本估计总体,用频率估计概率,从年龄在的所有游客中随机抽取3人,设这3人中打算购买熏肉大饼的人数为,求的分布列和数学期望.
【参考数据及公式】,其中.
年龄/岁 | |||||
抽取人数 | |||||
有意向购买熏肉大饼的人数 |
年龄低于岁的人数 | 年龄不低于岁的人数 | 总计 | |
有意向购买熏肉大饼的人数 | |||
无意向购买熏肉大饼的人数 | |||
总计 |
【参考数据及公式】,其中.
您最近半年使用:0次
昨日更新
|
164次组卷
|
1卷引用:吉林省“best合作体”2023-2024学年高二上学期期末考试数学试题
4 . 为考察药物对预防疾病以及药物对治疗疾病的效果,科研团队进行了大量动物对照试验.根据100个简单随机样本的数据,得到如下列联表:(单位:只)
(1)依据的独立性检验,分析药物对预防疾病的有效性;
(2)用频率估计概率,现从患病的动物中用随机抽样的方法每次选取1只,用药物进行治疗.已知药物的治愈率如下:对未服用过药物的动物治愈率为,对服用过药物的动物治愈率为.若共选取3次,每次选取的结果是相互独立的.记选取的3只动物中被治愈的动物个数为,求的分布列和数学期望.
附:,
药物 | 疾病 | ||
未患病 | 患病 | 合计 | |
未服用 | 30 | 15 | 45 |
服用 | 45 | 10 | 55 |
合计 | 75 | 25 | 100 |
(2)用频率估计概率,现从患病的动物中用随机抽样的方法每次选取1只,用药物进行治疗.已知药物的治愈率如下:对未服用过药物的动物治愈率为,对服用过药物的动物治愈率为.若共选取3次,每次选取的结果是相互独立的.记选取的3只动物中被治愈的动物个数为,求的分布列和数学期望.
附:,
0.100 | 0.050 | 0.010 | 0.001 | |
2.706 | 3.841 | 6.635 | 10.828 |
您最近半年使用:0次
5 . 某市号召市民尽量减少开车出行,以绿色低碳的出行方式支持节能减排.原来天天开车上班的王先生积极响应政府号召,准备每天在骑自行车和开车两种出行方式中随机选择一种方式出行.从即日起出行方式选择规则如下:第一天选择骑自行车方式上班,随后每天用“一次性抛掷4枚均匀硬币”的方法确定出行方式,若得到的正面朝上的枚数小于3,则该天出行方式与前一天相同,否则选择另一种出行方式.
(1)设表示事件“在第天,王先生上班选择的是骑自行车出行方式”的概率.
①求;
②用表示;
(2)依据值,阐述说明王先生的这种随机选择出行方式是否积极响应市政府的号召.
(1)设表示事件“在第天,王先生上班选择的是骑自行车出行方式”的概率.
①求;
②用表示;
(2)依据值,阐述说明王先生的这种随机选择出行方式是否积极响应市政府的号召.
您最近半年使用:0次
7日内更新
|
224次组卷
|
2卷引用:山东省德州市2024届高三上学期期末数学试题
(已下线)考点11 由实际问题探究递推关系 2024届高考数学考点总动员
2024·全国·模拟预测
解题方法
6 . 网球运动是一项激烈且耗时的运动,对于力量的消耗是很大的,这就需要网球运动员提高自己的耐力.耐力训练分为无氧和有氧两种训练方式.某网球俱乐部的运动员在某赛事前展开了一轮为期90天的封闭集训,在封闭集训期间每名运动员每天选择一种方式进行耐力训练.由训练计划知,在封闭集训期间,若运动员第天进行有氧训练,则第天进行有氧训练的概率为,第天进行无氧训练的概率为;若运动员第天进行无氧训练,则第天进行有氧训练的概率为,第天进行无氧训练的概率为.若运动员封闭集训的第1天进行有氧训练与无氧训练的概率相等.
(1)封闭集训期间,记3名运动员中第2天进行有氧训练的人数为,求的分布列与数学期望;
(2)封闭集训期间,记某运动员第天进行有氧训练的概率为,求.
(1)封闭集训期间,记3名运动员中第2天进行有氧训练的人数为,求的分布列与数学期望;
(2)封闭集训期间,记某运动员第天进行有氧训练的概率为,求.
您最近半年使用:0次
7日内更新
|
348次组卷
|
3卷引用:2024年普通高等学校招生全国统一考试数学预测卷(五)
(已下线)2024年普通高等学校招生全国统一考试数学预测卷(五)(已下线)2024年普通高等学校招生全国统一考试数学理科预测卷(七)(已下线)考点11 由实际问题探究递推关系 2024届高考数学考点总动员
解题方法
7 . 杭州亚运会吉祥物为一组名为“江南忆”的三个吉祥物“宸宸”,“琮琮”,“莲莲”,聚焦共同的文化基因,蕴含独特的城市元素.本次亚运会极大地鼓舞了中国人民参与运动的热情.某体能训练营为了激励参训队员,在训练之余组织了一个“玩骰子赢礼品”的活动,他们来到一处训练场地,恰有20步台阶,现有一枚质地均匀的骰子,游戏规则如下:掷一次骰子,出现3的倍数,则往上爬两步台阶,否则爬一步台阶,再重复以上步骤,当队员到达第7或第8步台阶时,游戏结束.规定:到达第7步台阶,认定失败;到达第8步台阶可赢得一组吉祥物.假设平地记为第0步台阶.记队员到达第步台阶的概率为(),记.
(1)投掷4次后,队员站在的台阶数为第阶,求的分布列;
(2)①求证:数列()是等比数列;
②求队员赢得吉祥物的概率.
(1)投掷4次后,队员站在的台阶数为第阶,求的分布列;
(2)①求证:数列()是等比数列;
②求队员赢得吉祥物的概率.
您最近半年使用:0次
7日内更新
|
188次组卷
|
2卷引用:河北省邢台市2024届高三上学期期末调研数学试题
(已下线)考点16 几类特殊的数列模型 2024届高考数学考点总动员
8 . 绵阳市37家a级旅游景区,在2023年国庆中秋双节期间,接待人数和门票收入大幅增长.绵阳某旅行社随机调查了市区100位市民平时外出旅游情况,得到的数据如下表:
(1)能否有的把握认为喜欢旅游与性别有关?
(2)将频率视为概率,从全市男性市民中随机抽取2人进行访谈,记这2人中喜欢旅游的人数为,求的分布列与数学期望.
附:
喜欢旅游 | 不喜欢旅游 | 总计 | |
男性 | 20 | 30 | 50 |
女性 | 30 | 20 | 50 |
总计 | 50 | 50 | 100 |
(2)将频率视为概率,从全市男性市民中随机抽取2人进行访谈,记这2人中喜欢旅游的人数为,求的分布列与数学期望.
附:
0.050 | 0.010 | 0.001 | |
k | 3.841 | 6.635 | 10.828 |
您最近半年使用:0次
7日内更新
|
562次组卷
|
3卷引用:四川省绵阳市2024届高三二模数学(理)试题
9 . 由于人类的破坏与栖息地的丧失等因素,地球上濒临灭绝生物的比例正在以惊人的速度增长.在工业社会以前,鸟类平均每年灭绝一种,兽类平均每年灭绝一种,但是自工业社会以来,地球物种灭绝的速度已经超出自然灭绝率的倍.所以保护动物刻不容缓,全世界都在号召保护动物,动物保护的核心内容是禁止虐待、残害任何动物,禁止猎杀和捕食野生动物,某动物保护机构为了调查研究人们“保护动物意识的强弱与性别是否有关联”,从某市市民中随机抽取名进行调查,得到统计数据如下表:
(1)根据以上数据,依据小概率值的独立性检验,能否认为人们保护动物意识的强弱与性别有关联?
(2)将频率视为概率,现从该市女性的市民中用随机抽样的方法每次抽取人,共抽取次.记被抽取的人中“保护动物意识强”的人数为,若每次抽取的结果是相互独立的,求的分布列和数学期望.
参考公式:,其中.
附:
保护动物意识强 | 保护动物意识弱 | 合计 | |
男性 | |||
女性 | |||
合计 |
(2)将频率视为概率,现从该市女性的市民中用随机抽样的方法每次抽取人,共抽取次.记被抽取的人中“保护动物意识强”的人数为,若每次抽取的结果是相互独立的,求的分布列和数学期望.
参考公式:,其中.
附:
您最近半年使用:0次
7日内更新
|
563次组卷
|
5卷引用:陕西省榆林市米脂中学2024届高三上学期第六次模拟考试数学(理)试题
(已下线)模块一 专题4 《概率和分布》单元检测篇 b提升卷(已下线)模块三 专题6大题分类练(统计)基础夯实练
解题方法
10 . 在一个地区筛查某种疾病,由以往经验可知该地区居民得此病(血液样本化验呈阳性)的概率为.根据需要,居民每三人一组进行化验筛查,为节约资源,化验次数越少,则方法越优.现对每组的3个样本给出下面两种化验方法:
方法1:逐个化验;
方法2:3个样本各取一部分混合在一起化验.若混合样本呈阳性,就把这3个样本再逐个化验;若混合样本呈阴性,则判断这3个样本均为阴性.
(1)若,用随机变量表示3个样本中检测呈阳性的个数,请写出的分布列并计算.
(2)若,现要完成化验筛查,请问:哪种方法更优?
(3)若要完成化验筛查,且已知“方法2”比“方法1”更优,求的取值范围.
方法1:逐个化验;
方法2:3个样本各取一部分混合在一起化验.若混合样本呈阳性,就把这3个样本再逐个化验;若混合样本呈阴性,则判断这3个样本均为阴性.
(1)若,用随机变量表示3个样本中检测呈阳性的个数,请写出的分布列并计算.
(2)若,现要完成化验筛查,请问:哪种方法更优?
(3)若要完成化验筛查,且已知“方法2”比“方法1”更优,求的取值范围.
您最近半年使用:0次
7日内更新
|
164次组卷
|
1卷引用:广东省深圳市罗湖区2024届高三上学期期末数学试题
跳转: 页