题型:
难度:
分类:
名校
1 . 调和信号是指频率恒定的一种信号,三角函数性质可以表达调和信号的周期性,指数函数可用来描述信号的衰减.已知一个调和信号的函数为,它的图象大致为( )
a. | b. |
c. | d. |
您最近半年使用:0次
今日更新
|
547次组卷
|
2卷引用:山东2024届高三12月全省大联考数学试题
解题方法
2 . 下列命题正确的有( )
a.存在正实数,,使得 |
b.对任意的角,都有 |
c.是与终边在同一条直线上的充要条件 |
d.函数为奇函数是函数为奇函数的充要条件 |
您最近半年使用:0次
名校
解题方法
3 . 已知把相同的椅子围成一个圆环;两个人分别从中随机选择一把椅子坐下.
(1)当时,设两个人座位之间空了把椅子(以相隔位子少的情况计数),求的分布列及数学期望;
(2)若另有把相同的椅子也围成一个圆环,两个人从上述两个圆环中等可能选择一个,并从中选择一把椅子坐下,若两人选择相邻座位的概率为,求整数的所有可能取值.
(1)当时,设两个人座位之间空了把椅子(以相隔位子少的情况计数),求的分布列及数学期望;
(2)若另有把相同的椅子也围成一个圆环,两个人从上述两个圆环中等可能选择一个,并从中选择一把椅子坐下,若两人选择相邻座位的概率为,求整数的所有可能取值.
您最近半年使用:0次
今日更新
|
129次组卷
|
2卷引用:广东省惠州市第一中学2024届高三元月阶段测试数学试题
(已下线)2024届数学新高考学科基地秘卷(一)
单选题
|
适中(0.65)
|
解题方法
4 . 2023年杭州亚运会吉祥物组合为“江南忆”,出自白居易的“江南忆,最忆是杭州”,名为“踪琮”、“莲莲”、“宸宸”的三个吉祥物,是一组承载深厚文化底蕴的机器人为了宣传杭州亚运会,某校决定派5名志愿者将这三个吉祥物安装在学校科技广场,每名志愿者只安装一个吉祥物,且每个吉祥物至少有一名志愿者安装,若志愿者甲只能安装吉祥物“宸宸”,则不同的安装方案种数为( )
a.50 | b.36 | c.26 | d.14 |
您最近半年使用:0次
名校
5 . 已知对恒成立,且越接近于1,它们的值也越接近.如,取时,有,计算可得:.则的近似值为( )(附:,,)
a.1.60 | b.1.61 | c.1.62 | d.1.63 |
您最近半年使用:0次
昨日更新
|
329次组卷
|
4卷引用:湖南省长沙市第一中学2024届高三上学期月考数学试卷(五)
(已下线)专题04 指数函数与对数函数1-2024年高一数学寒假作业单元合订本
名校
解题方法
6 . 2023年第31届大学生夏季运动会在成都举行,中国运动员在赛场上挑战自我,突破极限,以拼搏的姿态,展竞技之美,攀体育高峰.最终,中国代表团以103枚金牌、40枚银牌、35枚铜牌,总计178放奖牌的成绩,位列金牌榜和奖牌榜双第一,引发了大学生积极进行体育锻炼的热情.已知甲、乙两名大学生每天上午、下午都进行体育锻炼,近50天选择体育锻炼项目情况统计如下:
假设甲、乙上午、下午选择锻炼的项目相互独立,用频率估计概率.
(1)已知甲上午选择足球的条件下,下午仍选择足球的概率为,请将表格内容补充完整;(写出计算过程)
(2)记为甲、乙在一天中选择体育锻炼项目的个数差,求的分布列和数学期望;
(3)已知在这50天中上午室外温度在20度以下的概率为,并且当上午的室外温度低于20度时,甲去打羽毛球的概率为,若已知某天上午甲去打羽毛球,求这一天上午室外温度在20度以下的概率.
体育锻炼目的情况 (上午,下午) | (足球,足球) | (足球,羽毛球) | (羽毛球,足球) | (羽毛球,羽毛球) |
甲 | 20天 | 10天 | ||
乙 | 10天 | 10天 | 5天 | 25天 |
(1)已知甲上午选择足球的条件下,下午仍选择足球的概率为,请将表格内容补充完整;(写出计算过程)
(2)记为甲、乙在一天中选择体育锻炼项目的个数差,求的分布列和数学期望;
(3)已知在这50天中上午室外温度在20度以下的概率为,并且当上午的室外温度低于20度时,甲去打羽毛球的概率为,若已知某天上午甲去打羽毛球,求这一天上午室外温度在20度以下的概率.
您最近半年使用:0次
解题方法
7 . 给出下列两个定义:
ⅰ.对于函数,定义域为,且其在上是可导的,其导函数定义域也为,则称该函数是“同定义函数”.
ⅱ.对于一个“同定义函数”,若有以下性质:
①;②,其中,为两个新的函数,是的导函数.
我们将具有其中一个性质的函数称之为“单向导函数”,将两个性质都具有的函数称之为“双向导函数”,将称之为“自导函数”.
(1)判断下列两个函数是“单向导函数”,或者“双向导函数”,说明理由.如果具有性质①,则写出其对应的“自导函数”.ⅰ.;ⅱ..
(2)给出两个命题,,判断命题是的什么条件,证明你的结论.
:是“双向导函数”且其“自导函数”为常值函数,:.
(3)已知函数.
①若的“自导函数”是,试求的取值范围.
②若,且定义,若对任意,,不等式恒成立,求的取值范围.
ⅰ.对于函数,定义域为,且其在上是可导的,其导函数定义域也为,则称该函数是“同定义函数”.
ⅱ.对于一个“同定义函数”,若有以下性质:
①;②,其中,为两个新的函数,是的导函数.
我们将具有其中一个性质的函数称之为“单向导函数”,将两个性质都具有的函数称之为“双向导函数”,将称之为“自导函数”.
(1)判断下列两个函数是“单向导函数”,或者“双向导函数”,说明理由.如果具有性质①,则写出其对应的“自导函数”.ⅰ.;ⅱ..
(2)给出两个命题,,判断命题是的什么条件,证明你的结论.
:是“双向导函数”且其“自导函数”为常值函数,:.
(3)已知函数.
①若的“自导函数”是,试求的取值范围.
②若,且定义,若对任意,,不等式恒成立,求的取值范围.
您最近半年使用:0次
昨日更新
|
74次组卷
|
2卷引用:上海市普陀区桃浦中学2022-2023学年高二上学期12月月考数学试题
填空题-单空题
|
适中(0.65)
|
解题方法
8 . 某学校有、两个餐厅,已知同学甲每天中午都会在这两个餐厅中选择一个就餐,如果甲当天选择了某个餐厅,他第二天会有的可能性换另一个餐厅就餐,假如第天甲选择了餐厅,则第天选择餐厅的概率为__________ .
您最近半年使用:0次
7日内更新
|
449次组卷
|
2卷引用:甘肃省2024届高三上学期1月高考诊断考试数学试题
(已下线)考点11 由实际问题探究递推关系 2024届高考数学考点总动员【练】
名校
解题方法
9 . 假设市四月的天气情况有晴天,雨天,阴天三种,第二天的天气情况只取决于前一天的天气情况,与再之前的天气无关.若前一天为晴天,则第二天下雨的概率为,阴天的概率为;若前一天为下雨,则第二天晴天的概率为,阴天的概率为;若前一天为阴天,则第二天晴天的概率为,下雨的概率为;已知市4月第1天的天气情况为下雨.
(1)求市4月第3天的天气情况为晴天的概率;
(2)记为市四月第天的天气情况为晴天的概率,
(i)求出的通项公式;
(ii)市某花卉种植基地计划在四月根据天气情况种植向日葵,为了更好地促进向日葵种子的发芽和生长,要求提前3天对种子进行特殊处理,并尽可能地选择在晴天种植.如果你是该花卉种植基地的气象顾问,根据上述计算结果,请你对该基地的种植计划提出建议.
(1)求市4月第3天的天气情况为晴天的概率;
(2)记为市四月第天的天气情况为晴天的概率,
(i)求出的通项公式;
(ii)市某花卉种植基地计划在四月根据天气情况种植向日葵,为了更好地促进向日葵种子的发芽和生长,要求提前3天对种子进行特殊处理,并尽可能地选择在晴天种植.如果你是该花卉种植基地的气象顾问,根据上述计算结果,请你对该基地的种植计划提出建议.
您最近半年使用:0次
7日内更新
|
218次组卷
|
2卷引用:广西柳州市高级中学2024届高三上学期12月月考数学试题
(已下线)考点11 由实际问题探究递推关系 2024届高考数学考点总动员【练】
名校
解题方法
10 . 如图所示,某小区中心有一块圆心角为,半径为的扇形空地,现计划将该区域设计成亲子室外游乐区域,根据设计要求,需要铺设一块平行四边形的塑胶地面efpq(其中点e,f在边oa上,点在边ob上,点在ab上),其他区域地面铺设绿地,设.
(1)表示绿地的面积;
(2)若铺设绿地每平方米100元,要使得铺设绿地的出用最低,应取何值,并求出此时的值.
(1)表示绿地的面积;
(2)若铺设绿地每平方米100元,要使得铺设绿地的出用最低,应取何值,并求出此时的值.
您最近半年使用:0次
7日内更新
|
197次组卷
|
3卷引用:河北省沧州市泊头市第一中学2023-2024学年高一上学期1月月考数学试题
跳转: 页