来源:
题型:
难度:
分类:
1 . 某校高二(1)班的元旦联欢会设计了一项抽奖游戏:准备了张相同的卡片,其中只在张卡片上印有“奖”字.
(1)采取放回抽样方式,从中依次抽取张卡片,求抽到印有“奖”字卡片张数的分布列、数学期望及方差;
(2)采取不放回抽样方式,从中依次抽取张卡片,求第一次抽到印有“奖”字卡片的条件下,第三次抽到未印有“奖”字卡片的概率.
(1)采取放回抽样方式,从中依次抽取张卡片,求抽到印有“奖”字卡片张数的分布列、数学期望及方差;
(2)采取不放回抽样方式,从中依次抽取张卡片,求第一次抽到印有“奖”字卡片的条件下,第三次抽到未印有“奖”字卡片的概率.
您最近半年使用:0次
名校
解题方法
2 . 在数字通信中,信号是由数字“0”和“1”组成的序列.现连续发射信号次,每次发射信号“0”和“1”是等可能的.记发射信号1的次数为.
(1)当时,求
(2)已知切比雪夫不等式:对于任一随机变最,若其数学期望和方差均存在,则对任意正实数,有.根据该不等式可以对事件“”的概率作出下限估计.为了至少有的把握使发射信号“1”的频率在0.4与0.6之间,试估计信号发射次数的最小值.
(1)当时,求
(2)已知切比雪夫不等式:对于任一随机变最,若其数学期望和方差均存在,则对任意正实数,有.根据该不等式可以对事件“”的概率作出下限估计.为了至少有的把握使发射信号“1”的频率在0.4与0.6之间,试估计信号发射次数的最小值.
您最近半年使用:0次
7日内更新
|
407次组卷
|
14卷引用:广东省肇庆市2023届高三第二次教学质量检测数学试题
(已下线)第二篇 函数与导数专题5 切比雪夫、帕德逼近 微点3 切比雪夫函数与切比雪夫不等式(已下线)专题10 计数原理与概率统计(理科)(已下线)考点13 二项分布与超级几何分布 2024届高考数学考点总动员(已下线)模块三 专题7 大题分类练(概率)拔高能力练(已下线)第11讲 二项分布与超几何分布-【寒假预科讲义】2024年高二数学寒假精品课(人教a版2019)
名校
解题方法
3 . 某自行车厂为了解决复合材料制成的自行车车架应力不断变化问题,在不同条件下研究结构纤维按不同方向及角度黏合强度,在两条生产线上同时进行工艺比较实验,为了比较某项指标的对比情况,随机地抽取了部分甲生产线上产品该项指标的值,并计算得到其平均数,中位数,随机地抽得乙生产线上100件产品该项指标的值,并绘制成如下的频率分布直方图.
(1)求乙生产线的产品指标值的平均数与中位数(每组值用中间值代替,结果精确到0.01),并判断乙生产线较甲生产线的产品指标值是否更好(如果,则认为乙生产线的产品指标值较甲生产线的产品指标值更好,否则不认为更好).
(2)用频率估计概率,现从乙生产线上随机抽取5件产品,抽出指标值不小于70的产品个数用表示,求的数学期望与方差.
(1)求乙生产线的产品指标值的平均数与中位数(每组值用中间值代替,结果精确到0.01),并判断乙生产线较甲生产线的产品指标值是否更好(如果,则认为乙生产线的产品指标值较甲生产线的产品指标值更好,否则不认为更好).
(2)用频率估计概率,现从乙生产线上随机抽取5件产品,抽出指标值不小于70的产品个数用表示,求的数学期望与方差.
您最近半年使用:0次
7日内更新
|
650次组卷
|
2卷引用:2024届河南省郑州市高三毕业班第一次质量预测(一模)数学试题
4 . 某同学参加学校数学知识竞赛,规定每个同学答20道题,已知该同学每道题答对的概率为0.6,每道题答对与否相互独立.若答对一题得3分,答错一题扣1分,则该同学总得分的数学期望为________ ,方差为________ .
您最近半年使用:0次
2024-01-20更新
|
97次组卷
|
1卷引用:艺体生一轮复习 第九章 计数原理、概率与统计 第47讲 离散型随机变量的均值与方差【练】
(已下线)艺体生一轮复习 第九章 计数原理、概率与统计 第47讲 离散型随机变量的均值与方差【练】
智能选题,一键自动生成优质试卷~
2024高三·全国·专题练习
解题方法
5 . 有一批产品,其中有12件正品和4件次品,从中有放回地任取3件,若x表示取到次品的次数,则________ ,________ .
您最近半年使用:0次
2024-01-19更新
|
85次组卷
|
1卷引用:艺体生一轮复习 第九章 计数原理、概率与统计 第47讲 离散型随机变量的均值与方差【练】
(已下线)艺体生一轮复习 第九章 计数原理、概率与统计 第47讲 离散型随机变量的均值与方差【练】
解题方法
6 . 随机变量,且,随机变量,若,则( )
a. | b. |
c. | d. |
您最近半年使用:0次
2024-01-19更新
|
174次组卷
|
1卷引用:辽宁省县级重点高中协作体2023-2024学年高二上学期期末数学试题
名校
解题方法
7 . 某市规定,高中学生三年在校期间参加不少于80小时的社区服务才合格.教育部门在全市随机抽取200位学生参加社区服务的数据,按时间段,(单位:小时)进行统计,其频率分布直方图如图所示.
(1)求抽取的200位学生中,参加社区服务时间不少于90小时的学生人数,并估计从全市高中学生中任意选取一人,其参加社区服务时间不少于90小时的概率;
(2)从全市高中学生(人数很多)中任意选取3位学生,记为3位学生中参加社区服务时间不少于90小时的人数.试求随机变量的分布列和数学期望和方差.
(1)求抽取的200位学生中,参加社区服务时间不少于90小时的学生人数,并估计从全市高中学生中任意选取一人,其参加社区服务时间不少于90小时的概率;
(2)从全市高中学生(人数很多)中任意选取3位学生,记为3位学生中参加社区服务时间不少于90小时的人数.试求随机变量的分布列和数学期望和方差.
您最近半年使用:0次
2024-01-18更新
|
650次组卷
|
2卷引用:宁夏石嘴山市第三中学2016届高考一模数学(理)试题
(已下线)艺体生一轮复习 第九章 计数原理、概率与统计 第47讲 离散型随机变量的均值与方差【练】
名校
8 . 随着科技的发展,网络已逐渐融入了人们的生活.网购是非常方便的购物方式,为了了解网购在我市的普及情况,某调查机构进行了有关网购的调查问卷,并从参与调查的市民中随机抽取了男女各人进行分析,从而得到表(单位:人):
(1)完成上表;对于以上数据,采用小概率值的独立性检验,能否认为我市市民网购与性别有关联?
(2)①现从所抽取的女市民中利用分层抽样的方法抽取20人,再从这20人中随机选取3人赠送优惠券,求选取的3人中至少有2人经常网购的概率;
②将频率视为概率,从我市所有参与调查的市民中随机抽取20人赠送礼品,记其中经常网购的人数为,求随机变量的数学期望和方差.
参考公式:.常用的小概率值和对应的临界值如下表:
经常网购 | 偶尔或不用网购 | 合计 | |
男性 | 45 | 100 | |
女性 | 65 | 100 | |
合计 |
(1)完成上表;对于以上数据,采用小概率值的独立性检验,能否认为我市市民网购与性别有关联?
(2)①现从所抽取的女市民中利用分层抽样的方法抽取20人,再从这20人中随机选取3人赠送优惠券,求选取的3人中至少有2人经常网购的概率;
②将频率视为概率,从我市所有参与调查的市民中随机抽取20人赠送礼品,记其中经常网购的人数为,求随机变量的数学期望和方差.
参考公式:.常用的小概率值和对应的临界值如下表:
a | 0.150 | 0.100 | 0.050 | 0.025 | 0.010 | 0.005 | 0.001 |
2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
您最近半年使用:0次
2024-01-17更新
|
296次组卷
|
1卷引用:江苏省镇江市第一中学2024届高三上学期1月学情检测调研数学试题
名校
解题方法
9 . 若,且,则__________ .
您最近半年使用:0次
2024-01-17更新
|
394次组卷
|
2卷引用:上海市北虹高级中学2023-2024学年高二上学期期末数学试题
解题方法
10 . 设随机变量,,若,则__________ ,____________ .
您最近半年使用:0次
2024-01-13更新
|
167次组卷
|
1卷引用:广东省肇庆市加美学校2022-2023学年高二下学期期末复习数学练习卷(2)
跳转: 页