计算卡方进行独立性检验 习题/试题/练习题/测试题及答案-k8凯发

全部
#:
a-g:
h-j:
k-s:
t-z:
k8凯发-凯发真人首先娱乐 > 知识点选题 >
题型:
难度:
解析
| 共计 4362 道试题
1 . 随着计算机时代的迅速发展,人工智能也渗透到生活的方方面面,如:线上缴费、指纹识别、动态导航等,给人们的生活带来极大的方便,提升了生活质量.为了了解市场需求,某品牌“扫地机器人”公司随机调查了1000人,记录其年龄与是否使用“扫地机器人”得到如下统计图表:(分区间,……统计)
   
(1)根据所给的数据,完成下面的列联表,并根据表中数据,判断是否有99%的把握认为使用“扫地机器人”与年龄有关?

是否使用扫地机器人


年龄





(2)从这1000个年龄在的人中按年龄段采取分层抽样的方法抽取5人,现从这5人中随机,抽取3人做深度采访,求这3人中恰有2人年龄在年龄在的概率.
附:
0.0500.0100.001
3.8416.63510.828
今日更新 | 58次组卷 | 1卷引用:陕西省宝鸡市2024届高三上学期高考模拟检测(一)数学(文)试题
解答题-应用题 | 较易(0.85) |
2 . 日,中共中央政治局召开会议,审议《关于优化生育政策促进人口长期均衡发展的决定》并指出,为进一步优化生育政策,实施一对夫妻可以生育三个子女政策及配套支持措施.某市为了解政策开放后已婚女性生育三孩意愿的情况,选取“后”和“后”已婚女性作为调查对象,随机调查了位,得到数据如表:

生育三孩意愿

无生育三孩意愿

合计

后”

后”

合计

(1)请根据题目信息,依据列联表中的数据求出的值;
(2)根据调查数据,是否有以上的把握认为“已婚女性生育三孩意愿与年龄有关”,并说明理由.参考数据:

(参考公式:,其中
今日更新 | 10次组卷 | 1卷引用:广西桂林市2023-2024学年高二上学期数学期末质量检测数学试题
解答题-应用题 | 适中(0.65) |
3 . 《国家学生体质健康标准》是我国对学生体质健康方面的基本要求,是综合评价学生综合素质的重要依据.为促进学生积极参加体育锻炼,养成良好的锻炼习惯,提高体质健康水平,某学校从全校学生中随机抽取200名学生进行“是否喜欢体育锻炼”的问卷调查.获得如下信息:
①男生所占比例为
②不喜欢体育锻炼的学生所占比例为
③喜欢体育锻炼的男生比喜欢体育锻炼的女生多50人.
(1)完成列联表,依据小概率值的独立性检验,分析喜欢体育锻炼与性别是否有关联?

性别

体育锻炼

合计

喜欢

不喜欢

合计

(2)(ⅰ)从这200名学生中采用按比例分配的分层随机抽样方法抽取20人,再从这20人中随机抽取3人.记事件“至少有2名男生”、“至少有2名喜欢体育锻炼的男生”、“至多有1名喜欢体育锻炼的女生”.请计算的值.
(ⅱ)对于随机事件,试分析的大小关系,并给予证明
参考公式及数据:.

0.10

0.05

0.010

0.001

2.706

3.841

6.635

10.828

昨日更新 | 34次组卷 | 1卷引用:广东省汕头市2024届高三上学期期末调研测试数学试题
4 . 为加快推动旅游业复苏,进一步增强居民旅游消费意愿,山东省人民政府规定自2023年1月21日起至3月31日在全省实施景区门票减免.据统计,活动开展以来游客至少去过两个及以上景区的人数占比为90%.某市旅游局从游客中随机抽取100人(其中年龄在50周岁及以下的有60人)了解他们对全省实施景区门票减免活动的满意度,并按年龄(50周岁及以下和50周岁以上)分类统计得到如下不完整的2×2列联表:

不满意

满意

总计

50周岁及以下

55

50周岁以上

15

总计

100

(1)根据统计数据完成以上2×2列联表,根据小概率值的独立性检验,能否认为对全省实施景区门票减免活动是否满意与年龄有关联(结果精确到0.01)?
(2)现从本市游客中随机抽取3人了解他们的出游情况,设其中至少去过两个及以上景区的人数为x,若以本次活动中至少去过两个及以上景区的人数的频率为概率,求x的分布列和数学期望.
参考公式及数据:,其中

0.100

0.050

0.010

0.001

2.706

3.841

6.635

10.828

昨日更新 | 176次组卷 | 1卷引用:艺体生一轮复习 第九章 计数原理、概率与统计 第50讲 独立性检验【讲】
多选题 | 较易(0.85) |
名校
5 . 下列说法正确的是(       
a.展开式中项的系数为
b.样本相关系数越大,两个变量的线性相关性越强;反之,线性相关性越弱
c.根据分类变量的成对样本数据计算得到,依据的独立性检验,没有充分证据推断零假设不成立,即可认为独立
d.在回归分析中,用最小二乘法求得的经验回归直线使所有数据的残差和为零
昨日更新 | 627次组卷 | 5卷引用:河北省沧州市泊头市第一中学等校2024届高三上学期12月省级联测考试数学试题
解答题-计算题 | 较易(0.85) |
名校
6 . 为了有针对性地提高学生体育锻炼的积极性,某中学随机抽取了80名学生,按照性别和体育锻炼情况整理为如下列联表:
性别锻炼合计
不经常经常
男生202040
女生241640
合计443680
(1)依据的独立性检验,能否认为性别因素会影响学生锻炼的经常性;
(2)若列联表中的所有样本观测数据都变为原来的10倍,再做第(1)问,得到的结论还一样吗?请说明理由;
附:①,其中.
②临界值表
0.10.050.010.0050.001
2.7063.8416.6357.87910.828
昨日更新 | 185次组卷 | 2卷引用:黑龙江省大兴安岭实验中学(东校区)2022-2023学年高二下学期期中考试数学试卷
7 . 为考察药物对预防疾病以及药物对治疗疾病的效果,科研团队进行了大量动物对照试验.根据100个简单随机样本的数据,得到如下列联表:(单位:只)
药物疾病
未患病患病合计
未服用301545
服用451055
合计7525100
(1)依据的独立性检验,分析药物对预防疾病的有效性;
(2)用频率估计概率,现从患病的动物中用随机抽样的方法每次选取1只,用药物进行治疗.已知药物的治愈率如下:对未服用过药物的动物治愈率为,对服用过药物的动物治愈率为.若共选取3次,每次选取的结果是相互独立的.记选取的3只动物中被治愈的动物个数为,求的分布列和数学期望.
附:
0.1000.0500.0100.001
2.7063.8416.63510.828
昨日更新 | 136次组卷 | 1卷引用:江苏省无锡市2024届高三上学期期终教学质量调研测试数学试题
解答题-应用题 | 适中(0.65) |
名校
8 . 某平台为了解当代大学生对“网络公序良俗”的认知情况,设计了一份调查表,题目分为必答题和选答题.其中必答题是①、②、③共三道题,选答题为④、⑤、⑥、⑦、⑧、⑨、⑩共七道题,被调查者在选答题中自主选择其中4道题目回答即可.为了调查当代大学生对④、⑥、⑧、⑩四道选答题的答题情况,从同济大学在④、⑥、⑧、⑩四个题目中至少选答一道的学生中随机抽取100名学生进行调查,他们选答④、⑥、⑧、⑩的题目数及人数统计如表:
选答④、⑥、⑧、⑩的题目数1道2道3道4道
人数20303020
(1)学校还调查了这100位学生的性别情况,研究男女生中“公序良俗”达人的大概比例,得到的数据如下表:(规定同时选答④、⑥、⑧、⑩的学生为“公序良俗”达人)

性别

“公序良俗”达人

非“公序良俗”达人

总计

男性

30

女性

7

总计

100

请完成上述2×2列联表,并根据小概率值的独立性检验,分析“公序良俗”达人与性别是否有关.
(2)从这100名学生中任选2名,记表示这2名学生选答④、⑥、⑧、⑩的题目数之差的绝对值,求随机变量的数学期望;
参考公式:,其中.
附表:
0.100.050.0100.001
2.7063.8416.63510.828
7日内更新 | 79次组卷 | 1卷引用:广东华侨中学、广州协和中学、增城中学2024届高三上学期期末联考数学试题
9 . 数学运算是数学学科的核心素养之一,具备较好的数学运算素养一般体现为在运算中算法合理、计算准确、过程规范、细节到位,为了诊断学情、培养习惯、发展素养,某老师计划调研准确率与运算速度之间是否有关,他记录了一段时间的相关数据如下表:
项目速度快速度慢合计
准确率高102232
准确率低111728
合计213960
(1)依据的独立性检验,能否认为数学考试中准确率与运算速度相关?
(2)为鼓励学生全面发展,现随机将准确率高且速度快的10名同学分成人数分别为3,3,4的三个小组进行小组才艺展示,若甲、乙两人在这10人中,求甲在3人一组的前提下乙在4人一组的概率.
附:
0.1000.0500.0250.0100.0050.001
2.7063.8415.0246.6357.87910.828
其中.
7日内更新 | 116次组卷 | 1卷引用:湖北省武汉市武昌区2024届高三上学期期末质量检测数学试题
解答题-问答题 | 适中(0.65) |
名校
10 . 微信已成为人们常用的社交软件,“微信运动”是微信里由腾讯开发的一个类似计步数据库的公众号.手机用户可以通过关注“微信运动”公众号查看自己每天行走的步数,同时也可以和好友进行运动量的pk或点赞.现从小明的微信好友中随机选取40人(男、女各20人),记录他们某一天行走的步数,并将数据整理如下表:
步数
性别
0~20002001~50005001~80008001~10000>10000
12476
03962
若某人一天行走的步数超过8000步被评定为“积极型”,否则被评定为“懈怠型”,
(1)根据题意完成下面的列联表;

积极型懈怠型总计
总计
(2)计算的值,并据此判断能否有90%的把握认为“评定类型”与“性别”有关?
本题参考:独立性检验计算公式:,其中
相关关系的可信度临界值表:
0.500.400.250.150.100.050.0250.0100.0050.001
k0.4550.7081.3232.0722.7063.8415.0246.6357.87910.828
7日内更新 | 35次组卷 | 1卷引用:宁夏石嘴山市第三中学2022-2023学年高二下学期期末考试数学(理科)试题
跳转:
试题篮 0
共计3 平均难度:一般
共计道 平均难度:一般
网站地图